MeasureTheory.OuterMeasure.OfFunction
このファイルでは関数から外測度を構成します.(外測度の別定義として知られる)
コード元 MeasureTheory.OuterMeasure.OfFunction
/-- Given any function `m` assigning measures to sets satisfying `m ∅ = 0`, there is
a unique maximal outer measure `μ` satisfying `μ s ≤ m s` for all `s : Set α`. -/
protected def ofFunction (m : Set α → ℝ≥0∞) (m_empty : m ∅ = 0) : OuterMeasure α :=
let μ s := ⨅ (f : ℕ → Set α) (_ : s ⊆ ⋃ i, f i), ∑' i, m (f i)
{ measureOf := μ
empty :=
le_antisymm
((iInf_le_of_le fun _ => ∅) <| iInf_le_of_le (empty_subset _) <| by simp [m_empty])
(zero_le _)
mono := fun {_ _} hs => iInf_mono fun _ => iInf_mono' fun hb => ⟨hs.trans hb, le_rfl⟩
iUnion_nat := fun s _ =>
ENNReal.le_of_forall_pos_le_add <| by
intro ε hε (hb : (∑' i, μ (s i)) < ∞)
rcases ENNReal.exists_pos_sum_of_countable (ENNReal.coe_pos.2 hε).ne' ℕ with ⟨ε', hε', hl⟩
refine le_trans ?_ (add_le_add_left (le_of_lt hl) _)
rw [← ENNReal.tsum_add]
choose f hf using
show ∀ i, ∃ f : ℕ → Set α, (s i ⊆ ⋃ i, f i) ∧ (∑' i, m (f i)) < μ (s i) + ε' i by
intro i
have : μ (s i) < μ (s i) + ε' i :=
ENNReal.lt_add_right (ne_top_of_le_ne_top hb.ne <| ENNReal.le_tsum _)
(by simpa using (hε' i).ne')
rcases iInf_lt_iff.mp this with ⟨t, ht⟩
exists t
contrapose! ht
exact le_iInf ht
refine le_trans ?_ (ENNReal.tsum_le_tsum fun i => le_of_lt (hf i).2)
rw [← ENNReal.tsum_prod, ← Nat.pairEquiv.symm.tsum_eq]
refine iInf_le_of_le _ (iInf_le _ ?_)
apply iUnion_subset
intro i
apply Subset.trans (hf i).1
apply iUnion_subset
simp only [Nat.pairEquiv_symm_apply]
rw [iUnion_unpair]
intro j
apply subset_iUnion₂ i }
集合\(s\)を高々可算無限個の\(f_{i \in \mathbb{N}}\)で覆い, \(\mu(s) = \inf \sum\limits_{i=0}^\infty m (f_i)\) で定義すると, \(\mu\)は外測度になります.