MeasureTheory.Function.HasFiniteIntegral ============================================ コード元 [MeasureTheory.Function.HasFiniteIntegral](https://leanprover-community.github.io/mathlib4_docs/Mathlib/MeasureTheory/Function/L1Space/HasFiniteIntegral.html) ``` lean4 variable [ENorm ε] /-- `HasFiniteIntegral f μ` means that the integral `∫⁻ a, ‖f a‖ ∂μ` is finite. `HasFiniteIntegral f` means `HasFiniteIntegral f volume`. -/ def HasFiniteIntegral {_ : MeasurableSpace α} (f : α → ε) (μ : Measure α := by volume_tac) : Prop := ∫⁻ a, ‖f a‖ₑ ∂μ < ∞ ``` ここで, `‖ e ‖ₑ`はeの拡張(extended, ∞を含む)非負実数ノルムで以下のように定義されます. ``` lean4 /-- Auxiliary class, endowing a type `α` with a function `enorm : α → ℝ≥0∞` with notation `‖x‖ₑ`. -/ @[notation_class] class ENorm (E : Type*) where /-- the `ℝ≥0∞`-valued norm function. -/ enorm : E → ℝ≥0∞ @[inherit_doc] notation "‖" e "‖ₑ" => enorm e ``` ``` lean4 variable [NormedAddCommGroup β] theorem hasFiniteIntegral_iff_norm (f : α → β) : HasFiniteIntegral f μ ↔ (∫⁻ a, ENNReal.ofReal ‖f a‖ ∂μ) < ∞ := by simp only [hasFiniteIntegral_iff_enorm, ofReal_norm_eq_enorm] ``` `f`の値域が`NormedAddCommGroup`(ノルム付き可換群)である時, `HasFiniteIntegral`は`f`のノルムの絶対可積分性と同値です. これは以下の`ofReal_norm_eq_enorm`から従います. ここで`@[to_additive ofReal_norm_eq_enorm]`は, `E`をSeminormedGroupからSeminormedAddGroupに変え, `ofReal_norm_eq_enorm`の二項演算子`*`を`+`に変えたバージョンを生成するためのタグです. ``` lean4 variable [SeminormedGroup E] @[to_additive ofReal_norm_eq_enorm] lemma ofReal_norm_eq_enorm' (a : E) : .ofReal ‖a‖ = ‖a‖ₑ := ENNReal.ofReal_eq_coe_nnreal _ ```