ProbabilityTheory.Independence.Kernel ========================================= このファイルではカーネルによって独立性を定義していきます. ``` lean4 /-- A family of sets of sets `π : ι → Set (Set Ω)` is independent with respect to a kernel `κ` and a measure `μ` if for any finite set of indices `s = {i_1, ..., i_n}`, for any sets `f i_1 ∈ π i_1, ..., f i_n ∈ π i_n`, then `∀ᵐ a ∂μ, κ a (⋂ i in s, f i) = ∏ i ∈ s, κ a (f i)`. It will be used for families of pi_systems. -/ def iIndepSets {_mΩ : MeasurableSpace Ω} (π : ι → Set (Set Ω)) (κ : Kernel α Ω) (μ : Measure α := by volume_tac) : Prop := ∀ (s : Finset ι) {f : ι → Set Ω} (_H : ∀ i, i ∈ s → f i ∈ π i), ∀ᵐ a ∂μ, κ a (⋂ i ∈ s, f i) = ∏ i ∈ s, κ a (f i) ``` 添え字付きの集合族`π`が独立であるとは, 任意の有限個の添え字の集合`{i_1, ..., i_n}`に対して, その添え字に対応する集合`f i_1, ..., f i_n`が`π i_1, ..., π i_n`に属するならば, `∀ᵐ a ∂μ, κ a (⋂ i in s, f i) = ∏ i ∈ s, κ a (f i)`が成り立つことと定義します. ``` lean4 /-- Two sets of sets `s₁, s₂` are independent with respect to a kernel `κ` and a measure `μ` if for any sets `t₁ ∈ s₁, t₂ ∈ s₂`, then `∀ᵐ a ∂μ, κ a (t₁ ∩ t₂) = κ a (t₁) * κ a (t₂)` -/ def IndepSets {_mΩ : MeasurableSpace Ω} (s1 s2 : Set (Set Ω)) (κ : Kernel α Ω) (μ : Measure α := by volume_tac) : Prop := ∀ t1 t2 : Set Ω, t1 ∈ s1 → t2 ∈ s2 → (∀ᵐ a ∂μ, κ a (t1 ∩ t2) = κ a t1 * κ a t2) ``` 集合族`s1`と`s2`が独立であるとは, 任意の集合`t1 ∈ s1, t2 ∈ s2`に対して, `∀ᵐ a ∂μ, κ a (t1 ∩ t2) = κ a t1 * κ a t2`が成り立つことと定義します. ``` lean4 /-- A family of measurable space structures (i.e. of σ-algebras) is independent with respect to a kernel `κ` and a measure `μ` if the family of sets of measurable sets they define is independent. -/ def iIndep (m : ι → MeasurableSpace Ω) {_mΩ : MeasurableSpace Ω} (κ : Kernel α Ω) (μ : Measure α := by volume_tac) : Prop := iIndepSets (fun x ↦ {s | MeasurableSet[m x] s}) κ μ ``` 添え字付きの可測空間族`m`が独立であるとは, 任意の添え字`x`に対して, `m x`が定める可測集合の族が独立であることと定義します. ``` lean4 /-- Two measurable space structures (or σ-algebras) `m₁, m₂` are independent with respect to a kernel `κ` and a measure `μ` if for any sets `t₁ ∈ m₁, t₂ ∈ m₂`, `∀ᵐ a ∂μ, κ a (t₁ ∩ t₂) = κ a (t₁) * κ a (t₂)` -/ def Indep (m₁ m₂ : MeasurableSpace Ω) {_mΩ : MeasurableSpace Ω} (κ : Kernel α Ω) (μ : Measure α := by volume_tac) : Prop := IndepSets {s | MeasurableSet[m₁] s} {s | MeasurableSet[m₂] s} κ μ ``` 添え字付きの可測空間族`m₁, m₂`が独立であるとは, 任意の集合`t1 ∈ m₁, t2 ∈ m₂`に対して, `∀ᵐ a ∂μ, κ a (t1 ∩ t2) = κ a t1 * κ a t2`が成り立つことと定義します.