MeasureTheory.Function.HasFiniteIntegral
コード元 MeasureTheory.Function.HasFiniteIntegral
variable [ENorm ε]
/-- `HasFiniteIntegral f μ` means that the integral `∫⁻ a, ‖f a‖ ∂μ` is finite.
`HasFiniteIntegral f` means `HasFiniteIntegral f volume`. -/
def HasFiniteIntegral {_ : MeasurableSpace α} (f : α → ε)
(μ : Measure α := by volume_tac) : Prop :=
∫⁻ a, ‖f a‖ₑ ∂μ < ∞
ここで, ‖ e ‖ₑ
はeの拡張(extended, ∞を含む)非負実数ノルムで以下のように定義されます.
/-- Auxiliary class, endowing a type `α` with a function `enorm : α → ℝ≥0∞` with notation `‖x‖ₑ`. -/
@[notation_class]
class ENorm (E : Type*) where
/-- the `ℝ≥0∞`-valued norm function. -/
enorm : E → ℝ≥0∞
@[inherit_doc] notation "‖" e "‖ₑ" => enorm e
variable [NormedAddCommGroup β]
theorem hasFiniteIntegral_iff_norm (f : α → β) :
HasFiniteIntegral f μ ↔ (∫⁻ a, ENNReal.ofReal ‖f a‖ ∂μ) < ∞ := by
simp only [hasFiniteIntegral_iff_enorm, ofReal_norm_eq_enorm]
f
の値域がNormedAddCommGroup
(ノルム付き可換群)である時, HasFiniteIntegral
はf
のノルムの絶対可積分性と同値です. これは以下のofReal_norm_eq_enorm
から従います. ここで@[to_additive ofReal_norm_eq_enorm]
は, E
をSeminormedGroupからSeminormedAddGroupに変え, ofReal_norm_eq_enorm
の二項演算子*
を+
に変えたバージョンを生成するためのタグです.
variable [SeminormedGroup E]
@[to_additive ofReal_norm_eq_enorm]
lemma ofReal_norm_eq_enorm' (a : E) : .ofReal ‖a‖ = ‖a‖ₑ := ENNReal.ofReal_eq_coe_nnreal _