ProbabilityTheory.Independence.Kernel

このファイルではカーネルによって独立性を定義していきます.

/-- A family of sets of sets `π : ι → Set (Set Ω)` is independent with respect to a kernel `κ` and
a measure `μ` if for any finite set of indices `s = {i_1, ..., i_n}`, for any sets
`f i_1 ∈ π i_1, ..., f i_n ∈ π i_n`, then `∀ᵐ a ∂μ, κ a (⋂ i in s, f i) = ∏ i ∈ s, κ a (f i)`.
It will be used for families of pi_systems. -/
def iIndepSets {_ : MeasurableSpace Ω}
    (π : ι  Set (Set Ω)) (κ : Kernel α Ω) (μ : Measure α := by volume_tac) : Prop :=
   (s : Finset ι) {f : ι  Set Ω} (_H :  i, i  s  f i  π i),
  ∀ᵐ a μ, κ a ( i  s, f i) =  i  s, κ a (f i)

添え字付きの集合族πが独立であるとは, 任意の有限個の添え字の集合{i_1, ..., i_n}に対して, その添え字に対応する集合f i_1, ..., f i_nπ i_1, ..., π i_nに属するならば, ∀ᵐ a ∂μ, κ a (⋂ i in s, f i) = i s, κ a (f i)が成り立つことと定義します.

/-- Two sets of sets `s₁, s₂` are independent with respect to a kernel `κ` and a measure `μ` if for
any sets `t₁ ∈ s₁, t₂ ∈ s₂`, then `∀ᵐ a ∂μ, κ a (t₁ ∩ t₂) = κ a (t₁) * κ a (t₂)` -/
def IndepSets {_ : MeasurableSpace Ω}
    (s1 s2 : Set (Set Ω)) (κ : Kernel α Ω) (μ : Measure α := by volume_tac) : Prop :=
   t1 t2 : Set Ω, t1  s1  t2  s2  (∀ᵐ a μ, κ a (t1  t2) = κ a t1 * κ a t2)

集合族s1s2が独立であるとは, 任意の集合t1 s1, t2 s2に対して, ∀ᵐ a ∂μ, κ a (t1 t2) = κ a t1 * κ a t2が成り立つことと定義します.

/-- A family of measurable space structures (i.e. of σ-algebras) is independent with respect to a
kernel `κ` and a measure `μ` if the family of sets of measurable sets they define is independent. -/
def iIndep (m : ι  MeasurableSpace Ω) {_ : MeasurableSpace Ω} (κ : Kernel α Ω)
    (μ : Measure α := by volume_tac) : Prop :=
  iIndepSets (fun x  {s | MeasurableSet[m x] s}) κ μ

添え字付きの可測空間族mが独立であるとは, 任意の添え字xに対して, m xが定める可測集合の族が独立であることと定義します.

/-- Two measurable space structures (or σ-algebras) `m₁, m₂` are independent with respect to a
kernel `κ` and a measure `μ` if for any sets `t₁ ∈ m₁, t₂ ∈ m₂`,
`∀ᵐ a ∂μ, κ a (t₁ ∩ t₂) = κ a (t₁) * κ a (t₂)` -/
def Indep (m₁ m₂ : MeasurableSpace Ω) {_ : MeasurableSpace Ω} (κ : Kernel α Ω)
    (μ : Measure α := by volume_tac) : Prop :=
  IndepSets {s | MeasurableSet[m₁] s} {s | MeasurableSet[m₂] s} κ μ

添え字付きの可測空間族m₁, m₂が独立であるとは, 任意の集合t1 m₁, t2 m₂に対して, ∀ᵐ a ∂μ, κ a (t1 t2) = κ a t1 * κ a t2が成り立つことと定義します.